SA WG2 Temporary Document

Page 1

SA WG2 Meeting #129bis
S2-1811752
25 – 30 November 2018, West Palm Beach, Florida
(revision of S2-18xxxxx)
Source:
ZTE
Title:
New solution: Service instance temporary binding in Service Framework
Document for:
Approval
Agenda Item:
TR 23.742/6.19
Work Item / Release:
FS_eSBA/Rel-16
Abstract of the contribution: This contribution propose a solution to avoid long-living binding between the consumer and producer based on the NFS set concept and Service Framework concept.
Summary
It is proposed to agree the following changes in TR 23.742.
***** Start of Change *****

6.x
Solution x: Service temporary binding at Service Framework
6.x.1
Introduction

This solution is to address the Key Issue 4 and how to establish the temporary binding between the service instance and the Service Framework. This solution also address how to establish the communication between the consumer service and provider service without long live binding between the two service instances.

6.x.2
High level description

This solution is based on the Network Function Service set concept and the Service Framework concept defined in other key issues. The details of Service Framework are out of scope of this solution. The following figures shows the architecture of this solution.

[image: image1.emf]Service Framework 1

Service Framework 2

Network

Function

Service 1

Network

Function

Service 3

Network

Function

Service 2

Network

Function

Service 4

Network

Function

Service 5

Network

Function

Service 6

NRF

NFS Set 1

UDSF

NFS Set 2

UDSF

Figure 6.x.2-1 Architecture based on Service Framework and Service Set
The following are the principles of this solution.

-
The Network Function Service instances are stateless. The Network Function Service instance may store the UE context in the UDSF and removed the UE context locally. The UDSF is shared within the NFS set.

-
When the UE context is created/retrieved from the UDSF in the NFS instance, the binding between the NFS instance and the UE context is temporary stored in the Service Framework. After the UE context is removed in the NFS instance, the Service Framework removes the temporary binding information.
-
There is no long-living binding between the consumer service instance and the provider service instance. Therefore any scale in/out or load balancing operation in one service instance does not impact the communication peer. This could simplify the service instance logic.

-
A UE Context Identifier is defined to uniquely identify the UE context within in the same NFS set. The UE Context Identifiers are exchanged between the consumer service instance and producer service instance

-
A Service Framework Identifier is defined to uniquely identify the Service Framework and the NFS set within the Service Framework. The Service Framework Identifiers are exchanged between the consumer service instance and producer service instance and used for communication.

6.x.3
Illustrated procedures

The below procedure illustrate how NFS instance is registered in the Service Framework and the NRF.

[image: image2.emf]NFS

NRF

Service Framework

1. Service start

2. Service Registration Request(ID(NFS1))

3. Service Registration Response(ID(SF))

4. NRF Registration/Update Request(NFS profile, ID(SF))

5. NRF Registration/update Response

Figure 6.x.3-1 NFS instance registration in Service Framework and NRF
1.
NF Service Instance consumer becomes operative for the first time.

2.
The NF Service Registers with the Service Framework and provides the NF service information including the NFS Set ID and NFS ID to be used by the Service Framework for forwarding messages.

3.
The Service Framework stores the NF service information that enables the routing to NFS. The Service Framework confirms successful registration. The Service Framework allocates an Service Framework Identifier(ID(SF1)) which is uniquely identified the Service Framework and the NFS set. The Service Framework Identifier can be used by other Service Framework for message routing to this Service Framework.
4.
The NF service instance registers in the NRF by providing the NFS profile and the Service Framework Identifier received from the Service Framework.

5.
The NRF stores the NFS profile and the related Service Framework Identifier and confirm the successful registration.
The below procedure illustrate how create the temporary binding in the Service Framework and how to communicate with the target NFS instance.

[image: image3.emf]NFS UDSF

Service

Framework

2. Create UE Binding Req(ID(A), ID(NFS1))

4. Create UE Binding Ack

3. Store binding

ID(A): ID(NFS)

1. ID(A) allocation

NFS Set

5. Store UE context

6. Release UE Binding Req(ID(A))

8. Release UE Binding Ack

7. Remove binding

ID(A): ID(NFS)

Figure 6.x.3-2 Create/Release Temporary binding in Service Framework
1. When a UE context is created in the NFS, the NFS allocates ID(A) which uniquely identifies the UE context in the NFS set . The NFS may ask UDSF to allocate the ID(A). After this step, the UE context is temporary bound to the NFS.

2. The NFS performs the Create UE Binding request(ID(A), ID(NFS)) in the Service Framework. This step is used to store the temporary UE binding of the ID(A) in the Service Framework.
3. The Service Framework stores the temporary binding (ID(A),ID(NFS))
4. The Service Framework sends Create UE Binding Ack to NFS.
5. The NFS may store the UE context in the UDSF and release the UE context locally.

6. The NFS sends Release UE Binding request(ID(A)) to the Service Framework.

7. The Service Framework removes the temporary binding(ID(A), ID(NFS))

8. The Service Framework sends the Release UE Binding response to the NFS.

[image: image4.emf]NFS1 UDSF1 SF1

SF2

UDSF2

NFS4 NFS5 NFR

5. Instance

Selection

9. Store binding

ID(B): ID(NFS5)

1. NFS Discovery Request(NFS type)

2. NFS Discovery Response(ID(SF2))

3. Message(ID(SF2), ID(A)+ID(SF1))

4. Message(ID(SF2), ID(A)+ID(SF1))

6. Message(NULL,ID(A)+ID(SF1))

8. Create UE Binding(ID(B), ID(NFS5))

10. Create UE Binding Ack

11. Message(ID(A)+ID(SF1),

ID(B)+ID(SF2))

14. Store

ID(B)+ID(SF2)

12. Message(ID(A)+ID(SF1),

ID(B)+ID(SF2))

13. Message(ID(A), ID(B)+ID(SF2))

7. ID(B) allocation

Store ID(A)+ID(SF1)

16. Message(ID(B)+ID(SF2))

17. Message(ID(B))

15. Message(ID(B)+ID(SF2))

NFS Set1

NFS Set2

Figure 6.x.3-3 Communication establishment via Service Framework
1. If the NFS1 needs to communicate with target NFS, it sends NFS Discovery Request to NRF, including the target NFS type. This message may be sent via the Service Framework.
2. The NRF response with the target ID(SF2), which uniquely identifies the Service Framework 2 and the NFS set 2.
3. The NFS1 sends message to the Service Framework 1. This message includes the target ID(SF2), which is used for message routing towards the Service Framework 2. This message also includes the ID(A) and the ID(SF1), which will be stored in the peer NF service. Because this is the first message between the two service instances, this message may also include SUPI (Subscription Permanent Identifier) to identify the UE.

4. The Service Framework 1 sends the message towards the Service Framework 2 according to the ID(SF2).

5. Because the Service Framework 2 doesn’t have temporary binding of this UE, the Service Framework performs the instance selection in the NF service Set 2 which is indicated by the ID(SF2).

6. The Service Framework sends the message towards the selected NFS 5. The target ID is set to NULL.

7. The NFS5 doesn’t have the UE context, therefore the NFS5 creates the UE context based on the received SUPI and allocate the ID(B) to uniquely identify the UE context in the NFS set 2. The NFS 5 also stores the ID(A) and the ID(SF1).

8. The NFS5 performs the Create UE Binding request(ID(B), ID(NFS5)) in the Service Framework 2. This step is used to store the temporary binding of the ID(B) in the Service Framework 2.
9. The SF2 stores the temporary binding (ID(B),ID(NFS5))
10. The SF2 sends Create UE Binding Ack to NFS5.
11. The NFS5 sends message back to NFS 1. The message is sent to the SF2. The target ID is set to the received (ID(A) and ID(SF1)), this message also includes the ID(B) and ID(SF2).

12. The Service Framework 2 sends the message towards the Service Framework 1 according to the ID(SF1).

13. The Service Framework 1 already has the temporary binding(ID(A), NFS1), therefore the Service Framework 1 forwards the message towards the NFS1. The target ID is set to ID(A).

14. The NFS1 identifies the UE context by using the ID(A) and handles the message. The NFS1 also stores the ID(B) and ID(SF2) which are used for the subsequence communication, as described in the following steps.

15. When the NFS1 needs to initiates subsequence communication, the NFS 1 sends message to the SF1. The target ID is set to the ID(B) and ID(SF2).

16. The SF1 forwards the message to SF2.

17. Based on the temporary binding (ID(B), NFS5), the SF2 forwards the message to NFS5, the target ID is set to ID(B).

6.x.4
Impacts on existing NFs, NF Services and Interfaces

Service Framework
- Support NFS instance registration: allocate a Service Framework Identifier which is uniquely identified the Service Framework and the NFS set, send the Service Framework Identifier back to the NFS instance.
-
Manage the temporary binding between UE context and the NFS instance.

-
Route the message to the NFS instance based on the temporary binding.
-
Route the message to other Service Framework based on the Service Framework Identifier.

-
Select service instance in the NFS set identified by the Service Framework Identifier.

NFS instance:

- Registration in the Service Framework and receives the Service Framework Identifier from the Service Framework.

-
Register the Service Framework Identifier and the NFS profile in the NRF.

-
Use UE context Identifiers to uniquely identify the UE context in the NFS set.

-
Exchange the Service Framework Identifiers and the UE context Identifiers between consumer instance and producer instance.

NRF:

-
Store the Service Framework Identifier and the NFS profile.

6.x.5
Evaluation of the Solution

This solution focus on how to avoid the long-living binding between the consumer and producer. This solution have following characteristics:

-
The UE context is temporary boundd with the NFS service instance and the binding information is temporary stored in the Service Framework.

-
The service consumer and service producer exchanges the UE context Identifiers and Service Framework Identifiers.
-
The service consumer and service producer use the UE context Identifiers and Service Framework Identifiers as target ID for subsequence transaction.
-
Any service scale in/out operation in one service instance does not impact the communication peer.
***** End of Changes *****
3GPP

SA WG2 TD

_1602920938.vsd
NFS

NRF

Service Framework

1. Service start

2. Service Registration Request(ID(NFS1))

3. Service Registration Response(ID(SF))

4. NRF Registration/Update Request(NFS profile, ID(SF))

5. NRF Registration/update Response

_1602933576.vsd
NFS

UDSF

Service Framework

5. Store UE context

6. Release UE Binding Req(ID(A))

8. Release UE Binding Ack

7. Remove binding
ID(A): ID(NFS)

2. Create UE Binding Req(ID(A), ID(NFS1))

4. Create UE Binding Ack

3. Store binding
ID(A): ID(NFS)

1. ID(A) allocation

NFS Set

_1602933853.vsd
NFS1

UDSF1

SF1

SF2

UDSF2

NFS4

NFS5

NFR

5. Instance Selection

9. Store binding
ID(B): ID(NFS5)

1. NFS Discovery Request(NFS type)

2. NFS Discovery Response(ID(SF2))

3. Message(ID(SF2), ID(A)+ID(SF1))

4. Message(ID(SF2), ID(A)+ID(SF1))

6. Message(NULL,ID(A)+ID(SF1))

8. Create UE Binding(ID(B), ID(NFS5))

10. Create UE Binding Ack

11. Message(ID(A)+ID(SF1), ID(B)+ID(SF2))

14. Store ID(B)+ID(SF2)

12. Message(ID(A)+ID(SF1), ID(B)+ID(SF2))

13. Message(ID(A), ID(B)+ID(SF2))

7. ID(B) allocation
Store ID(A)+ID(SF1)

16. Message(ID(B)+ID(SF2))

17. Message(ID(B))

15. Message(ID(B)+ID(SF2))

NFS Set1

NFS Set2

_1602920925.vsd
Service Framework 1

Service Framework 2

Network Function Service 1

Network Function Service 3

Network Function Service 2

Network Function Service 4

Network Function Service 5

Network Function Service 6

NRF

NFS Set 1

NFS Set 2

UDSF

UDSF

